-
永磁同步电机 编辑
永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种利用永磁体产生磁场的同步电机,其转子的转速与定子绕组的电流频率保持一致。
永磁同步电动机由定子、转子和端盖等部件构成。定子与普通感应电动机基本相同,采用叠片结构以减小电动机运行时的铁耗。转子可做成实心,也可用叠片叠压 。电枢绕组可采用集中整距绕组的,也可采用分布短距绕组和非常规绕组 。
永磁同步电机的工作原理基于定子产生的旋转磁场与转子上永磁体产生的磁场之间的相互作用。转子上安装有预先磁化的永磁体,这些永磁体在旋转时能够产生强烈的磁场,从而提供更大的输出转矩。电机的控制系统会精确地调节电流,确保电机转子可以与旋转磁场同步旋转,保持稳定的运行状态 。
永磁同步电机是一种广泛应用的电机类型,具有高效率,良好动态响应性能,低噪音等优势 ,在电动汽车、机器人和其他需要高效率、高动态性能和低噪音等领域被广泛应用。
中文名:永磁同步电机
外文名:PMSM(Permanent Magnetic Synchronous Machine)
优点:结构简单、节约能源等
称为:他励发电机
用途:发电机或电动机
应用:工业、农业等实业领域
图1 两种结构形式的表面形式转子的磁路结构
图2 三种不同形式的内置式转子的磁路结构
基本结构
式中,F为圆形旋转磁动势,(T・m);Fφl为单相磁动势的最大幅值,(T・m);k为基波绕组系数;p为电机极对数;N为每一线圈的串联匝数;I为线圈中流过电流的有效值,由于永磁同步电机的转速恒为同步转速,因此转子主磁场和定子圆形旋转磁动势产生的旋转磁场保持相对静止。两个磁场相互作用,在定子与转子之间的气隙中形成一个合成磁场,它与转子主磁场发生相互作用,产生了一个推动或者阻碍电机旋转的电磁转矩Te,即%20
式中,Te为电磁转矩,(N・m);为功率角,rad;BR为转子主磁场,T;Bnet为气隙合成磁场,T。由于气隙合成磁场与转子主磁场位置关系的不同,永磁同步电机既可以运行于电动机状态也可以运行于发电机状态,永磁同步电机的三种运行状态如图3所示。当气隙合成磁场滞后于转子主磁场时,产生的电磁转矩与转子旋转方向相反,这时电机处于发电状态;相反,当气隙合成磁场超前于转子主磁场时,产生的电磁转矩与转子旋转方向相同,这时电机处于电动状态。转子主磁场与气隙合成磁场之间的夹角称为功率角。%20
图3 永磁同步电机概念图
永磁同步电机由两个关键部件组成,即一个多极化永磁转子和带有适当设计绕组的定子。在操作过程中,旋转的多极化永磁转子在转子与定子的气隙形成一个随时间变化的磁通。这个通量在定子绕组端子上产生交流电压,从而形成用于发电的基础。在此处所讨论的永磁同步电机使用一个安装在铁磁芯上的环形永磁铁。内部永磁同步电机不在这里考虑。因磁铁嵌入到一个电镀的铁磁芯内是非常困难的,通过使用适当厚度的磁铁(500μm)以及在转子和定子铁芯的高性能磁材料,气隙可以做得非常大(300~500μm)而没有明显的性能损失,这使得定子绕组在气隙中占据一定的空间,从而大大简化了永磁同步电动机的制造。
两相旋转坐标系下,定子电压方程为:
图4 永磁同步电机稳态运行相量图
按励磁电流的供给方式分类
永磁同步电机是利用永磁体建立励磁磁场的同步电机,其定子产生旋转磁场,转子用永磁材料制成。同步电机实现能量转换需要一个直流磁场,产生这个磁场的直流电流称为电机的励磁电流。
1.他励电机:从其他电源获得励磁电流的电机。 2.
自励电机:从电机本身获得励磁电流的电机。
按供电频率分类
永磁无刷电机包括永磁无刷直流电机和永磁无刷交流电机两种类型,作为电动机运行时均需变频供电。前者只需要方波型逆变器供电,后者需要正弦波型逆变器供电。
按气隙磁场分布分类
1.正弦波永磁同步电机:磁极采用永磁材料,输入三相正弦波电流时,气隙磁场按正弦规律分布,简称为永磁同步电机。 2.
梯形波永磁同步电机:磁极仍为永磁材料,但输入方波电流,气隙磁场呈梯形波分布,性能更接近于直流电机。用梯形波永磁同步电机构成的自控变频同步电机又称为无刷直流电机。
永磁同步电机恒压频比控制方法
永磁同步电机的恒压频比控制方法与交流感应电机的恒压频比控制方法相似,控制电机输入电压的幅值和频率同时变化,从而使电机磁通恒定,恒压频比控制方法可以适应大范围调速系统的要求。
在不反馈电流、电压或位置等物理信号的前提下,仍能达到一定的控制精度,这是恒压频比控制方法的最大优点。恒压频比控制方法控制算法简单、硬件成本低廉,在通用变频器领域得到了广泛应用。恒压频比控制方法的缺点也显而易见,由于在控制过程中没有反馈速度、位置或任何其他的信号,所以几乎完全不能获得电机的运行状态信息,更无法精确控制转速或电磁转矩,系统性能一般,动态响应较差,尤其在给定目标速度发生变化或者负载突变时,容易产生失步和振荡等问题。显然,该种控制方法不能分别控制转矩和励磁电流,在控制过程中容易存在较大的励磁电流,影响电机的效率。因此,此种控制方法常用于性能需求较低的通用变频器中,如空调、流水线的传送带驱动控制、水泵和风机的节能运行等。
永磁同步电机直接转矩控制技术
直接转矩控制(Direct Self-Control ,DSC)在定子静止坐标系上构建磁链和电磁转矩模型,通过施加不同的电压矢量实现电磁转矩和定子磁链的控制。直接转矩控制方法有着算法简单、转矩响应好等优点,因此,在要求高瞬态转矩响应的场合,此种方法得到了广泛应用。
由于控制存在固有的缺点使得直接转矩控制方法在速度较低时控制频率低,转矩脉动较大。因此减小低速时的转矩脉动也成了直接转矩控制方法中的研究热点,孙笑辉等通过优化电压矢量作用时间来减小低速时的转矩脉动,效果较好。D.casadei等人基于离散空间矢量调制技术将直接转矩控制方法应用于交流感应电机的控制中,减小了转矩脉动。
永磁同步电机矢量控制技术
矢量控制技术诞生于上世纪 70 年代初,永磁同步电机的矢量控制系统是参照直流电机的控制策略,利用坐标变换将采集到的电机三相定子电流、磁链等矢量按照转子磁链这一旋转矢量的方向分解成两个分量,一个沿着转子磁链方向,称为直轴励磁电流;另一个正交于转子磁链方向,称为交轴转矩电流。根据不同的控制目标调节励磁电流和转矩电流,进而实现对速度和转矩的精确控制,使控制系统获得良好的稳态和动态响应特性。
根据不同的控制目标,永磁同步电机矢量控制算法可以分为以下几种:id=0控制、最大转矩/电流控制、弱磁控制等。这些性能指标均可以通过对直轴励磁电流和交轴转矩电流的独立控制来实现。
永磁同步电机可以将电机整体地安装在轮轴上,形成整体直驱系统,即一个轮轴就是一个驱动单元,省去了一个齿轮箱。永磁同步电机的优点如下:
1.永磁同步电机本身的功率效率高以及功率因数高; 2.
永磁同步电机发热小,因此电机冷却系统结构简单、体积小、噪声小; 3.
系统采用全封闭结构,无传动齿轮磨损、无传动齿轮噪声,免润滑油、免维护; 4.
永磁同步电机允许的过载电流大,可靠性显著提高; 5.
整个传动系统重量轻,簧下重量也比传统的轮轴传动的轻,单位重量的功率大; 6.
由于没有齿轮箱,可对转向架系统随意设计:如柔式转向架、单轴转向架,使列车动力性能大大提高。 7.
由于采用了永磁材料磁极,特别是采用了稀土金属永磁体(如钕铁硼等),其磁能积高,可得到较高的气隙磁通密度,因此在容量相同时,电机的体积小、重量轻。 8.
转子没有铜损和铁损,也没有集电环和电刷的摩擦损耗,运行效率高。 9.
转动惯量小,允许的脉冲转矩大,可获得较高的加速度,动态性能好,结构紧凑,运行可靠。
电机转矩特性
为了提高电机的转矩特性,许多学者和研究机构在永磁同步电机的结构设计上进行了大胆的尝试和革新,并且取得了许多新进展。为了解决槽宽和齿部宽度的矛盾,开发了横向磁通电( transverse flux machine)技术,电枢线圈和齿槽结构在空间上垂直,主磁通沿着电机的轴向流通,提高了电机的功率密度;采用双层的永磁体布置,使得电机的交轴电导提高,从而增加了电机的输出转矩和最大功率;改变定子齿形和磁极形状以减少电机的转矩脉动等。
弱磁扩速能力
采用弱磁控制后,永磁同步电机的运行特性更加适合电动汽车的驱动要求。在同等功率要求的情况下,降低了逆变器容量,提高了驱动系统的效率。因此,电动汽车驱动用永磁同步电机普遍采用弱磁扩速。为此,国内外的研究机构提出了多种方案,如采用双套定子结构,在不同转速时使用不同绕组,以最大限度地利用永磁体磁场;采用复合转子结构,转子增加磁阻段以控制电机直轴和交轴的电抗参数,从而增加电机扩速能力;定子采用深槽以增加直轴漏抗以扩大电机的转速范围。
电机控制理论
由于永磁同步电机具有非线性和多变量等特点,其控制难度大,控制算法复杂,传统的矢量控制方法往往不能满足要求。为此,一些先进的控制方法在永磁同步电机调速系统中得到应用,包括自适应观测器、模型参考自适应、高频信号注入法及模糊控制、遗传算法等智能控制方法。这些控制方法不依赖于控制对象的数学模型,适应性和鲁棒性好,对于永磁同步电机这样的非线性强的系统具有独特的优势。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。