-
詹姆斯·赫克曼 编辑
詹姆斯·赫克曼(James J. Heckman),美国著名经济学家,芝加哥经济学派代表人物之一,2000年诺贝尔经济学奖得主,芝加哥大学亨利·舒尔茨杰出经济学教授、香港中文大学博文讲座教授。赫克曼1944年生于美国伊利诺斯州的芝加哥,曾就读于科罗拉多学院数学系,1971年获普林斯顿大学经济系博士学位,2013年获伦敦大学学院经济学名誉博士学位。曾在哥伦比亚大学、耶鲁大学和芝加哥大学任教,曾任伦敦大学学院微观经济学主席。微观计量经济学的开创者,因对分析选择性抽样的原理和方法所做出的发展和贡献,与丹尼尔·麦克法登一起荣获2000年诺贝尔经济学奖。2018年11月,获聘北京大学经济学院名誉教授。2024年,担任香港中文大学博文讲座教授,并获颁授香港中文大学荣誉社会科学博士学位。
詹姆斯·赫克曼
从1995年起,赫克曼就在芝加哥大学获任亨利·舒尔茨杰出成就经济学教授,为芝加哥大学的教授。赫克曼在经济学领域的研究内容涉及诸如社会项目评估、非连续选择和纵向数据的计量经济学模式、劳工市场经济学以及收入分配的模式选择等等。
2000年的诺贝尔经济学奖授予两位美国经济学家詹姆斯·赫克曼和丹尼尔·麦克法登,以奖励他们发展广泛应用在经济学以及其他社会科学中对个人和住户的行为进行统计分析的理论和方法。尤其是,对赫克曼奖励他“对分析选择性抽样的原理和方法所做出的发展和贡献”获奖。对麦克法登奖励他对分析离散抉择的理论和方法的发展。这两位经济学家所从事的学科领域可称为微观计量经济学。早年计量经济学主要都用在宏观经济学上,即主要研究以国民经济为主体的经济行为。微观经济学问题,即个人、住户和企业的经济行为问题;例如,决定个人在教育、就业、住房等方面选择的经济因素是什么,不同的劳动市场和教育计划对个人收入和就业有什么激励影响等等。这类问题以前很少有人研究。其原因之一是这方面的统计数据不容易找到。近三十年来,微观统计数据开始越来越丰富,使得微观计量经济学研究就有了可能。但是这里有许多新的统计上的问题要解决。例如,个人或住户行为的统计样本不一定是随机的,从而不一定有代表性;影响个人行为的某些特征是不可观察的等等。
2024年,香港中文大学特聘Heckman教授担任博文讲座教授,与大学师生分享专业知识。履新后,Heckman教授致力促进香港中文大学刘佐德全球经济及金融研究所与芝加哥大学人类发展经济学中心的交流与合作。
获颁香港中文大学荣誉社会科学博士学位
个体经济计量研究
詹姆斯·赫克曼
值得一提的是,过去数十年来对经济个体的计量研究之所以有突飞猛进的发展,一个重要的原因是在这段时间中有多个大型“个体资料”的资料库问世。所谓“个体资料”就是以家庭、厂商等经济个体为样本收集单位的资料,一般为“横断面”形式(即在某个时点对许多经济个体进行普查集样),但近年来“追踪资料”(即连续在多个时点对同一批经济个体进行普查集样)也越来越普及,而追踪资料中又以美国密西根大学在1960年末开始的“所得动态追踪研究资料库”(简称PSID)最为著名,这个资料库除了造就无数的实证研究外,也成为许多国家建立追踪资料库的典范。
这些大型个体资料库的推出,除了有助于更精确严谨地验证既有的经济理论外,还引发出许多新的计量课题,主要是围绕个体资料本身的特点,在对这些新课题分析讨论的过程中,计量方法也因此有了长足的发展,个体经济计量研究就这样随着个体资料库的普及而茁壮成长。此外由于电脑的普及以及计算能力的速增,大量个体资料的处理变得可行,这也是个体经济计量研究得以进步的重要原因。
微观经济计量学
詹姆斯·赫克曼
赫克曼除了对个体经济计量学的理论有重大贡献外,还进行了许多深入的实证研究,在劳动供给、薪资决定、失业期间、劳动市场辅导计划的效益评估、生育多寡、性别歧视等课题上,获得相当丰硕的实证研究结果,也提供了不少独到的见解。
劳动供给和薪资决定
詹姆斯·赫克曼
劳动市场辅导计划
诸如在职训练、就业辅助、员工津贴等劳动市场辅导计划,在许多国家都行之有年,评估这类计划的效益当然是一个很重要的问题,赫克曼对这个课题的重大贡献仍然是在于指出样本选择问题的存在:当我们试图测量某一劳动市场辅导计划对参与者的帮助有多大时,我们只能比较计划参与者和非参与者之间的差异。但是由之前对样本选择问题的讨论中我们应可了解,每一个计划参与者之所以加入计划都是经过一番评估的,只有在认定对自己有帮助时才会选择加入,也就是说,是否要参与计划绝不是随机决定的,所以计划参与者和非参与者的样本资料都有样本选择问题,要比较两者之间的差异必须采用类似赫克曼两阶段法的计量处理方式。赫克曼在一连串的后续研究中更进一步的指出,一般处理样本选择问题的计量方式,可能还都不能完全消除计划评估的样本选择误差,他因此曾建议采用实验方式收集资料以根本的避免样本选择问题,并对此建议进行详尽的理论分析。总结赫克曼以及其他学者过去二十多年来的研究,我们发现我们将是不太可能只根据单一的计量方法来评估所有的辅导计划,计划效益的评估必须逐案个别处理。而从赫克曼所做过的大量个案中我们也可发现,大多数劳动市场辅导计划对参与者的帮助都不明显,不同形式的计划对不同的参与者也会有很不相同的影响。
持续期间
所谓“持续期间”是指某一事件延续时间的长短,持续期间之计量分析在经济学中的应用包括失业期间、罢工时间、景气循环周期、消费者购物时点以及人口学的许多课题,诸如婚姻、生育、寿命、迁徙等的持续期间。赫克曼对持续期间的研究也有相当大的贡献,他特别重视持续期间资料的“隐性差异”问题,现以失业期间的分析为例来说明隐性差异的影响:在失业者中,素质较优的失业者比较容易找到新工作,因而有较短的失业期间,相对而言素质较差的失业者当然会有较长的失业期间,因此“长失业期间样本组”和“短失业期间样本组”之间的差异可能不完全是随机的,而是属于在素质上有根本差异的两个不同群组之间的差异,这两个群组之间的差异到底是什么,通常也无法完全确认,所以便以隐性差异称呼这些无法确认的素质差异,换句话说,失业期间之所以会长短不同,很可能是由无法确认之隐性差异所造成的,若有太多的隐性差异无法确认,则人们当然无法正确分析失业期间的决定因素。
在这个讨论中我们应可看出,隐性差异对持续期间分析的影响类似于样本选择问题,而样本选择问题的处理一直就是赫克曼的兴趣所在。为解决隐性差异问题,赫克曼提出一些无母数的计量方法,为持续期间的实证研究者所广泛采用,赫克曼本人也对失业期间和生育期间课题做了许多的实证研究。
抽样问题
詹姆斯·赫克曼
赫克曼在随后的研究工作中又提出了另一解决自选择问题的方法,即著名的赫克曼矫正法,又称两阶段方法或赫克曼方法。这个方法应用起来极为方便而且影响十分深远。赫克曼矫正法分两个步骤进行:第一步骤,研究者根据经济学理论设计出一个计算个体工作概率的模型,该模型的统计估计结果可以用来预测每个个体的概率;第二步骤,研究者将这些被预测的个体概率合并为一个额外的解释变量,与教育、年龄等变量一起来矫正自选择问题。这样,估计出的工资关系在统计意义上就很适当了。
《相关性随机系数模型的具变量方法》(1998)
《社会项目的计量评估》(2002)
《因人而异的教育回报估计》(2002)
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。